Resit Exam Probability Theory (WIKR-06)

11 July 2019, 09.00-12.00

- Every exercise needs to be handed in on separate sheets, which will be collected in separate piles.
- Write your name and student number on every sheet.
- It is absolutely not allowed to use calculators, phones, the book, notes or any other aids.
- Always give a short proof of your answer or a calculation to justify it, or clearly state the facts from the lecture notes you are using (unless it is stated explicitly in the question that this is not needed.).
- NOTA BENE: using separate sheets for the different exercises and writing your name and student number on all sheets is worth 10 out of the 100 points.

Exercise 1, (a:10, b:10, c:10 pts).
Let X, Y be independent and $\operatorname{Exp}(1)$-distributed.
(a) Show that $V:=X+Y$ has the Gamma(2,1)-distribution.
(b) Show that $U:=\frac{X}{X+Y}$ has the uniform distribution on $[0,1]$.
(c) Are U, V independent? (Justify your answer)

Exercise 2, (a:6, b:6, c:9, d:9 pts).
An urn contains n balls of which r are red and $n-r$ blue. We draw m balls from the urn (uniformly at random and) without replacement. Let X denote the number of red balls among the balls we drew.

(a) Show that

$$
\mathbb{P}(X=k)= \begin{cases}\frac{\binom{r}{k}\binom{n-r}{m-k}}{\binom{n}{m}} & \text { if } 0 \leq k \leq \min (m, r) \\ 0 & \text { otherwise }\end{cases}
$$

We can write $X=X_{1}+\cdots+X_{m}$ where

$$
X_{i}= \begin{cases}1 & \text { if the } i \text {-th ball is red } \\ 0 & \text { otherwise }\end{cases}
$$

(b) Show that $\mathbb{E} X_{i}=\frac{r}{n}$ for $i=1, \ldots, m$. What is $\mathbb{E} X$?
(c) Determine $\operatorname{Cov}\left(X_{i}, X_{j}\right)$ for all $1 \leq i, j \leq m$. What is $\operatorname{Var}(X)$?

Now imagine we are sending the total number of balls n to infinity and at the same time we send the number of red balls to infinity where $r=r(n)$ depends on n via the relation $r(n)=\lfloor p n\rfloor$ with $0<p<1$ fixed. We keep m, the number of balls we draw from the (increasingly large) urn, fixed as well. Let Y_{n} be the number of red balls when we draw m balls without replacement from an urn with n balls in total and $r(n)=\lfloor p n\rfloor$ red balls.
(d) Show that

$$
Y_{n} \xrightarrow[n \rightarrow \infty]{\mathrm{d}} Y
$$

where $Y \sim \operatorname{Bin}(m, p)$.
(Hint: You might first want to argue that it suffices to show $\mathbb{P}\left(Y_{n}=k\right) \rightarrow \mathbb{P}(Y=k)$ for each fixed k. Then you could look at the expression in (a) and divide each binomial coefficient by an appropriate power of n.)

Exercise 3, (a:5, b:5, c:5, d:5, e:5, f:5 pts)

(a) State and prove Markov's inequality. (For the proof, you may restrict yourself to the discrete case.)
(b) State and prove Chebyschev's inequality.

A function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is convex if

$$
\varphi(\lambda x+(1-\lambda) y) \leq \lambda \varphi(x)+(1-\lambda) \varphi(y)
$$

for all $x, y \in \mathbb{R}$ and $0 \leq \lambda \leq 1$.
(c) Let Z be a random variable with $-1 \leq Z \leq 1$ and $\mathbb{E} Z=0$, and let φ be a convex function. Show that $\mathbb{E} \varphi(Z) \leq \frac{1}{2}(\varphi(-1)+\varphi(1))$, and deduce that in particular the moment generating function of Z satisfies $\mathbb{E} e^{t Z} \leq \cosh (t)=\frac{1}{2}\left(e^{-t}+e^{t}\right)$.
(Hint: write $z \in[-1,1]$ as $z=\lambda \cdot(-1)+(1-\lambda) \cdot(+1)$, where $\lambda=\lambda(z) \in[0,1]$ depends on z. Take expectations on both sides of the inequality $\varphi(z) \leq \lambda(z) \varphi(-1)+(1-\lambda(z)) \varphi(1)$. You may use without proof that $z \mapsto e^{t z}$ is convex.)

Now suppose that X is $\operatorname{Bin}(n, p)$. So we can write $X=X_{1}+\cdots+X_{n}$ with the X_{i} i.i.d. $\operatorname{Be}(p)$ distributed. Write $Y_{i}=X_{i}-\mathbb{E} X_{i}, Y=\sum_{i=1}^{n} Y_{i}=X-\mathbb{E} X$.
(d) Show that $\mathbb{P}(X-\mathbb{E} X>\lambda) \leq e^{-t \lambda} \cdot \mathbb{E} e^{t Y}$, for every $t>0$.
(Hint: use Markov.)
(e) Show that $\mathbb{E} e^{t Y} \leq e^{n t^{2} / 2}$ and deduce that $\mathbb{P}(X-\mathbb{E} X>\lambda) \leq e^{-\lambda^{2} /(2 n)}$.
(Hint: use (c), that $\cosh (t) \leq e^{t^{2} / 2}$, and your knowledge of moment generating functions.)
(f) Show that $\mathbb{P}(|X-\mathbb{E} X|>\lambda) \leq 2 e^{-\lambda^{2} /(2 n)}$.

Closing remark: if you managed to solve (f) then you've just proved the Chernoff inequality for the binomial, which often gives a much better (=smaller) bound on the probability that $|X-\mathbb{E} X|>\lambda$ than the Chebyschev inequality.

